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1. Complex Algebra

Define addition and multiplication on the set R2 by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

and
(x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

Let C denote the set R2 together with this addition and multiplication; we call
C the set of complex numbers.

Let f : R → C be given by f(x) = (x, 0). This embeds the real line into C,
in a manner which preserves addition and multiplication; we call the image the
real axis, and identify R with its image.

Let i = (0, 1). Then i2 = i · i = (−1, 0) = −1. We call {(0, y) | y ∈ R} the
imaginary axis.

Every element of C can be written as x + iy in a unique way, where x, y ∈ R;
that is,

C = {x + iy | x, y ∈ R, i2 = −1}.
One can show that these operations have the following properties:

(F1) a + b = b + a for every a, b ∈ C;
(F2) (a + b) + c = a + (b + c) for every a, b, c ∈ C;
(F3) there exists 0 ∈ C such that a + 0 = a for every a ∈ C;
(F4) for every a ∈ C there exists b ∈ C such that a + b = 0;
(F5) ab = ba for every a, b ∈ C;
(F6) (ab)c = a(bc) for every a, b, c ∈ C;
(F7) there exists 1 ∈ C such that a · 1 = a for every a ∈ C;
(F8) for every a ∈ C r {0} there exists c ∈ C such that ac = 1;
(F9) a(b + c) = ab + ac for every a, b, c ∈ C.

Together, these properties state that C is a field. Note that
• 0 = 0 + i0;
• 1 = 1 + i0;
• −(x + iy) = −x + i(−y) = −x− iy;
• (x + iy)−1 = x−iy

x2+y2 .
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2. Complex Geometry

Let z = x+iy be an arbitrary complex number. The real part of z is <(z) = x.
The imaginary part of z is =(z) = y. We view R as the subset of C consisting of
those elements whose imaginary part is zero.

We graph complex number on the xy-plane, using the real part as the first
coordinate and the imaginary part as the second coordinate. Under this inter-
pretation, the set C becomes a real vector space of dimension two, with scalar
multiplication given by complex multiplication by a real number. We call this
vector space the complex plane.

Thus the geometric interpretation of complex addition is vector addition.
Let z = x + iy be an arbitrary complex number. The conjugate of z is

z = x − iy. This is the mirror image of z under reflection across the real axis.
The modulus of z is |z| =

√
x2 + y2. This is the length of z as a vector. Note

that zz = |z|2. The angle of z, denoted by ∠(z), is the angle between the vectors
(1, 0) and (x, y) in the real plane R2; this is well-defined up to a multiple of 2π.

Let r = |z| and θ = ∠(z). Then x = r cos θ and y = r sin θ. Define a function

cis : R → C by cis(θ) = cos θ + i sin θ.

Then z = rcis(θ); this is the polar representation of z.
Recall the trigonometric formulae for the cosine and sine of the sum of angles:

cos(A + B) = cos A cos B − sinA sinB

and
sin(A + B) = cos A sinB + sinA cos B.

Let z1 = r1cis(θ1) and z2 = r2cis(θ2). Then

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2((cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2))

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))

= r1r2cis(θ1 + θ2).

Thus the geometric interpretation of complex multiplication is:
(a) The radius of the product is the product of the radii;
(b) The angle of the product is the sum of the angles.
In particular, if |z| = 1, then z = cis(θ) for some θ, and zn = cis(nθ). Restate

this as

Theorem 1 (DeMoivre’s Theorem). cisn(θ) = cos(nθ) + i sin(nθ).

Example 1. Let f : C → C be given by f(z) = 2z. Then f dialates the complex
plane by a factor of 2.

Example 2. Let f : C → C be given by f(z) = iz. Then f rotates the complex
plane by 90 degrees.

Example 3. Let f : C → C be given by f(z) = (1 + i)z. Note that |1 + i| =
√

2
and ∠(1 + i) = π

4 . Then f dialates the complex plane by a factors of
√

2 and
rotates it by 45 degrees.
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3. Complex Powers and Roots

Let z = rcis(θ) and let n ∈ N. Then zn = rncis(nθ).
The unit circle in the complex plane is

U = {z ∈ C | |z| = 1}.
Note that if u1, u2 ∈ U, then u1u2 ∈ U.

Let ζ ∈ C and suppose that ζn = 1. We call ζ an nth root of unity. If ζm 6= 1
for m ∈ {1, . . . , n− 1}, we call ζ a primitive nth root of unity.

Let ζ = cis(2π
n ). Then ζn = cis(n 2π

n ) = cis(2π) = 1; one sees that ζ is a
primitive nth root of unity. Thus primitive roots of unity exist for every n. As m
ranges from 0 to n− 1, we obtain distinct complex numbers ζm, all of which are
nth roots of unity. These are all of the nth roots of unity; thus for each n ∈ N,
there are exactly n diistinct nth roots of unity.

If one graphs the nth roots of unity in the complex plane, the points lie on the
unit circle and they are the vertices of a regular n-gon, with one vertex always
at the point 1 = 1 + i0.

Let z = rcis(θ). Then z has exactly n distinct nth roots; they are

n
√

z = n
√

rζm
n cis(

θ

n
), where m ∈ {0, . . . , n− 1}.

The Fundamental Theorem of Algebra states that every polynomial with com-
plex coefficients has a root in the complex numbers.
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4. Complex Analysis

Let f : C → C. We say that f is continuous at z0 if for every ε > 0 there
exists δ > 0 such that |z − z0| < δ ⇒ |f(z)− f(z0)| < ε.

We say that f is differentiable at z0 if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

exists.
Complex differentiability has some amazing consequences; for example, it can

be shown that every complex differentiable function is analytic.
We use the Taylor series expansion for several real transcendental functions

in order to define their complex counterparts.
Define the complex exponential function

exp : C → C by exp(z) =
∞∑

n=0

zn

n!
.

Define the complex sine function by

sin : C → C by sin(z) = z − z3

3!
+

z5

5!
− z7

7!
+ . . .

Define the complex cosine function by

cos : C → C by cos(z) = 1− z2

2!
+

z4

4!
− z6

6!
+ . . .

Note that exp, sin, and cos, when restricted to R ⊂ C, are defined so as to be
consistant with other definitions of these real functions.

Define log : C → C to be an inverse function of exp. Let w, z ∈ C. We define
wz by

wz = exp(z log(w)).

Thus exp(z) = ez.
Euler evaluated exp(iz), separating the real and imaginary parts, and found

exp(iz) =
∞∑

n=0

(iz)n

n!

= 1 + iz + i2
z2

2!
+ i3

z3

3!
+ i4

z4

4!
+ i5

z5

5!
+ i6

z6

6!
+ i7

z7

7!
+ . . .

= (1− z2

2!
+

z4

4!
− z6

6!
+ . . . ) + i(z − z3

3!
+

z5

5!
− z7

7!
+ . . . )

= cos z + i sin z.

In particular, if z = θ ∈ R, we have

Theorem 2 (Euler’s Theorem). Let θ ∈ R. Then

eiθ = cis(θ).

Letting θ = π, we get the beautiful

eiπ + 1 = 0,

a formula that relates the four most important constants in mathematics.
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5. Sum of Square Reciprocals

5.1. Historical Background. Recall the triangular numbers

n∑
i=1

i =
n(n + 1)

2
.

Liebnitz was challenged by Huygens to find the sum of their reciprocals. First
factor out a 2 from all the terms 2

n(n+1) ; then compute

∞∑
n=1

1
n(n + 1)

=
∞∑

n=1

[ n + 1
n(n + 1)

− n

n(n + 1)

]
=

∞∑
n=1

[ 1
n
− 1

n + 1

]
= (1− 1

2
) + (

1
2
− 1

3
) + (

1
3
− 1

4
) + (

1
4
− 1

5
) + . . .

= 1− (
1
2
− 1

2
)− (

1
3
− 1

3
)− (

1
4
− 1

4
)− . . .

= 1.

Thus the sum of the reciprocals of the triangular numbers is 2.
Jacob Bernoulli, who knew that the harmonic series

∑
1
n diverges, then real-

ized that
∞∑

n=1

1
n2

< 1 +
∞∑

n=1

1
n(n + 1)

= 2.

Euler was able to compute the value to which the sum of the reciprocals of the
square natural numbers converges.

5.2. Polynomials with Specified Roots. Let a1, . . . , an ∈ C. We wish to
construct a canonical polynomial with these zeros. One way is to select the
polynomial to be monic; that is, to have 1 as the leading coefficient. The poly-
nomial with this property is just

f(x) =
n∏

i=1

(x− ai).

In this case, we know that the coefficients of f(x) are symmetric functions of the
zeros. However, we may also choose to normalize the polynomial by selecting
the constant coefficient to be 1. For this case, set

(†) g(x) =
n∏

i=1

(1− x

ai
).

The coefficient of x in g(x) is

(∗)
n∑

i=1

−1
ai

.
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5.3. Euler’s Method. Let g(x) = sin x
x ; the power series expansion for g(x) is

arrived at by taking the Taylor series for sin x and dividing it, term by term, by
x, to obtain:

g(x) = 1− x2

3!
+

x4

5!
− x6

7!
+ . . . .

This has the appearance of a polynomial whose constant coefficient in 1, except
that it infinitely many terms. Euler, being undeterred by this last fact, assumed
that g(x) could be written as an infinite product of linear terms as in equation
(†).

Note that g(0) = 1; otherwise, the zeros of g(x) are exactly those of sin x;
they are Z = {±π,±2π,±3π, . . . }. Thus Euler arrives at

g(x) =
∏
z∈Z

(1− x

z
)

=
(
(1− x

π
)(1 +

x

π
)
)(

(1− x

2π
)(1 +

x

2π
)
)
· · ·

(
(1− x

nπ
)(1 +

x

nπ
)
)
· · ·

=
(
1− x2

π2

)(
1− x2

4π2

)
· · ·

(
1− x2

n2π2

)
· · ·

=
∞∏

n=1

(
1− x2

n2π2

)
.

Multiplying out this infinite product, Euler finds the coefficient of the x2 term,
and equates it to the coefficient of the x2 term of the power series expansion of
g(x), as in equation (∗), to get

− 1
3!

=
∞∑

n=1

−1
n2π2

.

Multiply both sides by −π2 to arrive at the mysterious result
∞∑

n=1

1
n2

=
π2
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